Evidence for paternal age-related alterations in meiotic chromosome dynamics in the mouse.

نویسندگان

  • Lisa A Vrooman
  • So I Nagaoka
  • Terry J Hassold
  • Patricia A Hunt
چکیده

Increasing age in a woman is a well-documented risk factor for meiotic errors, but the effect of paternal age is less clear. Although it is generally agreed that spermatogenesis declines with age, the mechanisms that account for this remain unclear. Because meiosis involves a complex and tightly regulated series of processes that include DNA replication, DNA repair, and cell cycle regulation, we postulated that the effects of age might be evident as an increase in the frequency of meiotic errors. Accordingly, we analyzed spermatogenesis in male mice of different ages, examining meiotic chromosome dynamics in spermatocytes at prophase, at metaphase I, and at metaphase II. Our analyses demonstrate that recombination levels are reduced in the first wave of spermatogenesis in juvenile mice but increase in older males. We also observed age-dependent increases in XY chromosome pairing failure at pachytene and in the frequency of prematurely separated autosomal homologs at metaphase I. However, we found no evidence of an age-related increase in aneuploidy at metaphase II, indicating that cells harboring meiotic errors are eliminated by cycle checkpoint mechanisms, regardless of paternal age. Taken together, our data suggest that advancing paternal age affects pairing, synapsis, and recombination between homologous chromosomes--and likely results in reduced sperm counts due to germ cell loss--but is not an important contributor to aneuploidy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsically Defective Microtubule Dynamics Contribute to Age-Related Chromosome Segregation Errors in Mouse Oocyte Meiosis-I

Chromosome segregation errors in mammalian oocytes compromise development and are particularly prevalent in older females, but the aging-related cellular changes that promote segregation errors remain unclear [1, 2]. Aging causes a loss of meiotic chromosome cohesion, which can explain premature disjunction of sister chromatids [3-7], but why intact sister pairs should missegregate in meiosis-I...

متن کامل

P-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute

Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...

متن کامل

Diversity of chromosome numbers and meiotic studies in genus Anchusa (Boraginaceae) from Iran (10 Nov 2015)

The present study reports the chromosome number and meiotic behaviour of 14 populationsbelonging to four taxa of Anchusa subgenus Buglossum Gusul. from Iran. All populationsshowed the chromosome number 2n= 4x= 32. It is the first meiotic study for A. subg.Buglossum. We discuss some habit form and evolutionary aspect in the light of cytogeneticdata. The origin of polyploidy (auto-allopolyploidy)...

متن کامل

Protein Phosphatase 4 Promotes Chromosome Pairing and Synapsis, and Contributes to Maintaining Crossover Competence with Increasing Age

Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chrom...

متن کامل

Identification of Spata-19 New Variant with Expression beyond Meiotic Phase of Mouse Testis Development

Background: The study of specific genes expressed in the testis is important to understanding testis development and function. Spermatogenesis is an attractive model for the study of gene expression during germ cell differentiation. Spermatogenesis associated-19 (Spata-19) is a recently-identified important spermatogenesis-related gene specifically expressed in testis. Its protein product is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 196 2  شماره 

صفحات  -

تاریخ انتشار 2014